Abstract

Covert communication using Internet Protocol version 6 (IPv6) header fields can be easily detected. By thoroughly exploring the characteristics of IPv6 multicast, this study proposes a novel covert communication model based on IPv6 multicast (MCv6). In this model, a multicast group, containing a large number of members across different subnets, is created to hide the receiver’s network ID, thereby achieving covert communications. To ensure the security of this covert communication, a random key generation algorithm, based on the chaotic sequence, is proposed to encrypt communication packets. To ensure the legitimacy of covert communications, a multicast source authentication mechanism based on hash comparison is proposed to verify the legitimacy of communication source nodes. To ensure the integrity of covert communications, a two-stage error control mechanism is proposed to control the possible packet-loss and other errors. Theoretical analysis and simulation results show that the proposed MCv6 model can provide good IPv6-based covert communications, efficiently reducing the probability of detection, and ensuring the security and reliability of the IPv6-based medium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call