Abstract

An iterative approach utilizing density functional theory (DFT, PW91-GGA)-informed mean-field microkinetic models and reaction kinetics experiments is used to determine the reaction mechanism and the active site for formic acid (HCOOH, FA) decomposition over a Pd/C catalyst. Models parametrized using DFT energetics on clean Pd(100) and Pd(111) required large corrections to the DFT energetics for capturing our experimental data. Further, both Pd(111) and Pd(100) models predicted a high coverage of adsorbed CO (CO*), inconsistent with the assumption of a clean surface at which the rate parameters for these models were calculated. To better represent the active site under reaction conditions and explicitly account for the presence of CO*, subsequent microkinetic models were formulated using DFT energetics that were calculated on partially (5/9 ML) CO*-covered Pd (111) and (100) facets. Upon parameter adjustment, the resultant 5/9 ML CO*-covered Pd(100) model, although consistent in terms of CO* coverage, was unable to capture the dehydration path measured in the experiments and was, therefore, deemed not to offer an accurate representation of the active site for FA decomposition over Pd/C. In contrast, a partially CO*-covered Pd(111) model was better at representing the catalytic active site, as in addition to being consistent in terms of CO* coverages, it required small adjustments of the DFT parameters to accurately capture the experimental data set (both dehydrogenation and dehydration). Our results suggest that the reaction occurs via the spectroscopically elusive carboxyl (COOH*) intermediate and that spectator CO*-assisted decomposition pathways play an important role under typical experimental conditions. Further, our study highlights the importance of striving for coverage self-consistent microkinetic models and for including spectator-assisted mechanisms in order to develop an improved picture of the active site under reaction conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call