Abstract
A generalized quantum relativistic kinetic equation (RKE) of the Kadanoff–Baym type is obtained on the basis of the Heisenberg equations of motion where the time evolution and space translation are separated from each other by means of the covariant method. The same approach is used also for a covariant modification of the real-time Green's functions method based on the Wigner representation. The suggested approach does not contain arbitrariness' elements and uncertainties which often arise from derivation of RKE on the basis of the motion equations of the Kadanoff–Baym type for the correlation functions in the case of systems with inner degrees of freedom. Possibilities of the proposed method are demonstrated by examples of derivation of RKE of the Vlasov type and collision integrals of the Boltzmann– Uehling–Uhlenbeck (BUU) type in the frame of the σω-version of quantum hadrodynamics, for the simplest case of spin saturated nuclear matter without antinuclear component. Here, the quasiparticle approximation in a covariant performance is used. A generalization of the method for the description of strong non-equilibrium states based on the non-equilibrium statistical operator is then proposed as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.