Abstract

We derive an effectively three-dimensional relativistic spin precession formalism. The formalism is applicable to any spacetime where an arbitrary timelike reference congruence of worldlines is specified. We employ what we call a stopped spin vector which is the spin vector that we would get if we momentarily make a pure boost of the spin vector to stop it relative to the congruence. Starting from the Fermi transport equation for the standard spin vector we derive a corresponding transport equation for the stopped spin vector. Employing a spacetime transport equation for a vector along a worldline, corresponding to spatial parallel transport with respect to the congruence, we can write down a precession formula for a gyroscope relative to the local spatial geometry defined by the congruence. This general approach has already been pursued by Jantzen et al (see e.g. Jantzen R T, Carini P and Bini D 1992 Ann. Phys. 215 1–50), but the algebraic form of our respective expressions differs. We are also applying the formalism to a novel type of spatial parallel transport introduced in Jonsson (2006 Class. Quantum Grav. 23 1), as well as verifying the validity of the intuitive approach of a forthcoming paper (Jonsson 2006 forthcoming) where gyroscope precession is explained entirely as a double Thomas type of effect. We also present the resulting formalism in explicit three-dimensional form (using the boldface vector notation), and give examples of applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call