Abstract

Detecting multiple network attacks is essential to intrusion detection, network security defense and network traffic management. This paper presents a covariance matrix based detection approach to detecting multiple known and unknown network anomalies. It utilizes the difference of covariance matrices among observed samples in the detection. A threshold matrix is employed in the detection where each entry of the matrix evaluates the covariance changes of the corresponding features. As case studies, extensive experiments are conducted to detect multiple DoS attacks – the prevalent Internet anomalies. The experimental results indicate that the proposed approach achieves high detection rates in detecting multiple known and unknown anomalies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.