Abstract
By a Yamamoto-type of Ullmann cross-coupling reaction, a well-defined covalently-linked microporous organic-inorganic hybrid framework polyoctaphenylsilsesquioxane (JUC-Z1) was effectively prepared from the nano building block p-iodio-octaphenylsilsesquioxane (I8OPS) with a yield of ca. 100%. The structure of JUC-Z1 was characterized by (13)C CP/MAS NMR and (29)Si MAS NMR experiments. Fourier transform infrared spectroscopy (FTIR) was performed to confirm the presence of functions in the framework. The results showed that inorganic silsesquioxane cubes were linearly covalently-linked by biphenyls, offering a highly cross-coupling framework. The powder X-ray diffraction (PXRD) pattern and transmission electron microscope (TEM) image show that JUC-Z1 is spherical with uniform micropores. N(2) adsorption results suggest that the hybrid framework has a narrow pore size distribution from 11.8 to 20.0 Å, with a BET surface area of 283 m(2)g(-1) and a pore volume of 0.226 cm(3)g(-1). A thermogravimetric (TG) analysis indicates the thermal stability of JUC-Z1 up to 397 °C in air. Moreover, a liquid sorption experiment reveals the favorable sorption of benzene and water.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.