Abstract

The development of non-cytotoxic hydrogels that can allow for the controlled release of molecules has important clinical and therapeutic applications. In this paper, we developed a series of in situ hydrogels by combining N,O-carboxymethyl chitosan and oxidized alginate without additional crosslinking agents. The rheological properties of these hydrogels as well as their gelling time, swelling ratio, and in vitro degradation behavior were investigated. We observed that although gelation was rapid at physiological temperature, it was even faster in the presence of higher oxidization degree of alginate. In vitro cytotoxicity study showed that the developed hydrogels were not cytotoxic after 24 h of culturing with NIH-3T3 cells. Additionally, bovine serum albumin was released from the hydrogels initially by diffusion at early stages followed by a degradation-dependent mechanism at later stages. In conclusion, the developed hydrogel might have potential application in the drug delivery system and tissue engineering.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.