Abstract
Photocatalytic conversion of CO2 into value-added chemical fuels is a promising approach to address the depletion of fossil energy and environment-related concerns. Tailor-making the electronic properties and band structures of photocatalysts is pivotal to improve their efficiency and selectivity in photocatalytic CO2 reduction. Herein, a covalent triazine-based framework was developed containing electron-donor triphenylamine and electron-acceptor triazine components (DA-CTF). The engineered π-conjugated electron donor-acceptor dyads in DA-CTF not only optimized the optical bandgap but also contributed to visible-light harvesting and migration of photoexcited charge carriers. The activity of photocatalytic CO2 reduction under visible light was significantly improved compared with that of traditional g-C3 N4 and reported covalent triazine-based frameworks. This study provides molecular-level insights into the mechanism of photocatalytic CO2 reduction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.