Abstract

Peptide inhibitors corresponding to sequences in the six helix bundle structure of the fusogenic portion (gp41) of the HIV envelope glycoprotein have been successfully implemented in preventing HIV entry. These peptides bind to regions in HIV gp41 transiently exposed during the fusion reaction. In an effort to improve upon these entry inhibitors, we have successfully designed and tested peptide analogs composed of chemical spacers and reactive moieties positioned strategically to facilitate covalent attachment. Using a temperature-arrested state prime wash in vitro assay we show evidence for the trapping of a pre-six helix bundle fusion intermediate by a covalent reaction with the specific anti-HIV-1 peptide. This is the first demonstration of the trapping of an intermediate conformation of a viral envelope glycoprotein during the fusion process that occurs in live cells. The permanent specific attachment of the covalent inhibitor is projected to improve the pharmacokinetics of administration in vivo and thereby improve the long-term sustainability of peptide entry inhibitor therapy and help to expand its applicability beyond salvage therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.