Abstract

In dynamics, domain decomposition methods (DDMs) enable one to use different spatial and temporal discretizations depending on the physical phenomenon being taken into account. Thus, DDMs provide the analyst with key tools for dealing with problems in which phenomena occur on different temporal and spatial scales. This paper focuses on a less intrusive variation of this type of method which enables the global (industrial) mesh to remain unchanged while the local problem is being refined in space and in time where needed. This property is particularly useful in the case of a local problem whose localization evolves rapidly with time, as is the case for delamination. The downside is that the technique is iterative. The method is presented in the context of linear explicit dynamics, but, as with domain decomposition, its extension to other integration schemes and to nonlinear problems should be possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.