Abstract
In this paper, we give an alternative proof of the fact that, when compounding a nonnegative probability distribution, convex ordering between the distributions of the number of summands implies convex ordering between the resulting compound distributions. Although this is a classical textbook result in risk theory, our proof exhibits a concrete coupling between the compound distributions being compared, using the representation of one-period discrete martingale laws as a mixture of the corresponding extremal measures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.