Abstract

Vehicle front-end structure has the characteristic of symmetry. The damage of occupants in the crash process is determined by the combined effect of the front-end structure and the restraint system of the vehicle. In this paper, the coupling relationship and an optimized method for the vehicle front-end structure and restraint system are studied based on vehicle crash dynamics, to reduce occupant injury. A fast solution algorithm for occupant motion response was established using a crash analytical model. Then, an occupant response database was established using the algorithm, to analyze the coupling relationship between the crash pulse and the restraint specific stiffness, with respect to the curve shape and parameters. The results showed that the combination of the concave crash pulse and upward restraint stiffness curve was the best coupling. Subsequently, a coupled optimization method of a concave pulse and upward restraint stiffness was proposed and combined with a crash analytical model and genetic algorithm (GA). The crash pulse and restraint stiffness of vehicle crash data from the NHTSA databases were optimized, as an example, to verify the effectiveness of the method. The optimal occupant acceleration was reduced by 44%. In addition, the feasibility of the optimal result is discussed, to provide a reference for occupant injury protection in traffic accidents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call