Abstract

We present a new method for coupled linear elasticity problems whose finite element discretization may lead to spatially non-coincident discretized interfaces. Our approach combines the classical Dirichlet–Neumann coupling formulation with a new set of discretized interface conditions obtained through Taylor series expansions. We show that these conditions ensure linear consistency of the coupled finite element solution. We then formulate an iterative solution method for the coupled discrete system and apply the new coupling approach to two representative settings for which we also provide several numerical illustrations. The first setting is a mesh-tying problem in which both coupled structures have the same Lamé parameters whereas the second setting is an interface problem for which the Lamé parameters in the two coupled structures are different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.