Abstract

This paper proposes an extended finite element method (XFEM) modelling approach coupled with cyclic damage mechanics criteria to simulate the fatigue crack growth (FCG), progressive delamination, and bridging in metal-fibre reinforced polymer (FRP) composites. The FCG in the metal is described using linear elastic fracture mechanics. The cycle-by-cycle degradation of the adhesive layer, progressive damage in the FRP layers, and metal-FRP interface delamination are modelled using the damage mechanics criteria. The proposed XFEM model successfully simulates the fatigue behaviour of FRP-strengthened metallic plates. The FCG rates, crack trajectories, fatigue lives, and failure modes satisfactorily agree with the corresponding experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.