Abstract

A coupled spin-electron diamond chain with localized Ising spins placed on its nodal sites and mobile electrons delocalized over interstitial sites is explored in a magnetic field taking into account the difference between Land\'e g-factors of the localized spins and mobile electrons. The ground-state phase diagram is constituted by two classical ferrimagnetic phases, the quantum unsaturated paramagnetic phase and the saturated paramagnetic phase. Both classical ferrimagnetic phases as well as the unsaturated paramagnetic phase are reflected in a low-temperature magnetization curve as intermediate magnetization plateaus. The unsaturated paramagnetic phase is quantum in its character as evidenced by the fermionic concurrence calculated for a pair of the mobile electrons hopping in between the interstitial sites. It is shown that the magnetic field can under certain conditions induce a quantum entanglement above the disentangled ground state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.