Abstract

In this paper, an efficient numeric approach coupling smoothed particle hydrodynamics (SPH) with finite particle method (FPM) for fluid-solid interaction (FSI) problems is proposed and discussed. SPH is used for modeling fluid domains because of its ability to simulate free-surface flow. FPM is used to model solid domains as discretized particles to address motion, deformation, fracture and contact. The treatments of reduction of rigid body motion in FPM achieve a high efficiency for very large deformation analysis. The coupled SPH with FPM has been developed for imposing boundary condition by employing virtual particles. The proposed scheme is validated by published benchmark examples, and the results demonstrates good agreement with experimental, numerical and analytical results. The results of simulation of FSI problems with solid failure also indicates that the coupled SPH and FPM is straightforward in concept, and efficient in modeling solid failure and FSI with free-surface flow, which is promising for addressing nonlinear, fracture and contact problems in FSI processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.