Abstract

An atmosphere-land coupled simple climate model is constructed and its climatic properties are analyzed by introducing a global analysis method, cell mapping. The simple model is a nonlinear six order simplified climate model featured with chaotic dynamics, dissipation, and forcing source, which are the main features of the real climate system. The cell mapping method is applied with this coupled system. Numerical experiments are carried out for investigating the interactions between the fast-changing atmospheric variables and slow-changing underlying surface variables. The predictability of the system is also investigated via the global analysis, with which the evolution of the system is translated to the evolution of probability transition on a Markov Chain. An effective scheme is proposed for computing the probability transition matrix for the coupled system. Predictions can be made based on the combination of dynamics and statistics. The importance of constructing the coupled model is shown by globally analyzing the predictability of the coupled system. The coupling mechanism prolongs the memorization of initial information, and then the predictability as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.