Abstract

A regional sea ice-ocean coupled model for the Arctic Ocean was developed. The coupled model was based on the MITgcm ocean circulation model and classical Hibler79 type two category thermodynamics-dynamics sea ice model. The sea ice dynamics was considered based on Viscous-Plastic (VP). The sea ice thermodynamics was considered based on Winton three-layer models. A detailed configuration of coupled model has been introduced. Special attention has been paid to the model grid setup, subgrid paramerization, ice-ocean coupling and open boundary treatment. The coupled model was then applied and two test run examples were presented. The first model run was a climatology simulation with ten years (1992—2002) averaged NCAR/NCEP reanalysis data as atmospheric forcing. The second model run was a seasonal simulation for the period of 1992—2007. The atmospheric forcing was daily NCAR/NCEP reanalysis. The climatology simulation captured the general pattern of the sea ice thickness distribution of the Arctic, i.e., the thickest sea ice is situated around the Canada Archipelago and the north coast of the Greenland. For the second model run, the modeled September Sea ice extent anomaly from 1992—2007 was highly correlated with the observations, with a linear correlation coefficient of 0.88. The minimum of the Arctic sea ice area in the September of 2007 was unprecedented. The modeled sea ice area and extent for this minimum was overestimated relative to the observations. However, it captured the general pattern of the sea ice retreat.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.