Abstract

In the present study, a coupled refined high-order global-local theory is developed for predicting fully coupled behavior of smart multilayered/sandwich beams under electromechanical conditions. The proposed theory considers effects of transverse normal stress and transverse flexibility which is important for beams including soft cores or beams with drastic material properties changes through depth. Effects of induced transverse normal strains through the piezoelectric layers are also included in this study. In the presence of non-zero in-plane electric field component, all the kinematic and stress continuity conditions are satisfied at layer interfaces. In addition, for the first time, conditions of non-zero shear and normal tractions are satisfied even while the bottom or the top layer of the beam is piezoelectric. A combination of polynomial and exponential expressions with a layerwise term containing first order differentiation of electrical unknowns is used to introduce the in-plane displacement field. Also, the transverse displacement field is formulated utilizing a combination of continuous piecewise fourth-order polynomial with a layerwise representation of electrical unknowns. Finally, a quadratic electric potential is used across the thickness of each piezoelectric layer. It is worthy to note that in the proposed shear locking-free finite element formulation, the number of mechanical unknowns is independent of the number of layers. Excellent correlation has been found between the results obtained from the proposed formulation for thin and thick piezoelectric beams with those resulted from the three-dimensional theory of piezoelasticity. Moreover, the proposed finite element model is computationally economic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.