Abstract

This paper presents a method for the estimation of propeller effective wakes in oblique flows. It extends to inclined flows an approach based on correction factors previously developed for the estimation of effective wakes in straight flow. The approach converts propeller-induced velocities approximately predicted via potential flow theory into viscous-induced velocities on the basis of a viscous flow RANS analysis. The correction factors are a function of both the radial and angular positions on the propeller disk. They are calculated for a reference advance number and work accurately in a neighboring continuous region of advance numbers. This procedure allows controlling one of the errors present in the calculation of effective wakes, namely the error derived from coupling a potential flow method for the representation of the propeller with a RANS solver. Consequently, it permits calculating the effective wake more precisely in off-design conditions, reducing the CPU time, and therefore, enlarging its range of applicability to situations like those resulting from ship maneuvering. The approach is tested for a podded propulsor unit in oblique flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.