Abstract

This work presents a framework of coupling polygonal discrete elements and the lattice Boltzmann method using a direct forcing immersed boundary scheme. In this technique, an energy-conserving contact algorithm is utilized to handle the interactions between convex and concave polygonal particles. The surface of a polygon is represented by discrete boundary points which includes vertices of polygonal particles and/or points interpolated from vertices. The fluid-particle coupling is obtained through the interactions of the boundary points and the imaginary fluid particles using a direct forcing immersed boundary method. Validations of the proposed technique are made by single particle and multiple arbitrarily-shaped particle sedimentation tests, and the effect of particle shape is illustrated using a drafting-kissing-tumbling benchmark.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call