Abstract

After exploitation of groundwater had been reduced and the groundwater level of the confined aquifer had risen, land subsidence was observed to continue rather than cease for several years according to the layer-wise mark monitoring data in Xi’an. To analyze the phenomena, a numerical model of a coupled one-dimensional multilayer aquifer system is developed to represent land subsidence due to hydraulic head variation in the pumped layer. The numerical simulation results show that the pressure head in other layers does not rise immediately when the hydraulic head in the pumped layer starts to recover after pumping ceases. In addition, after the pumping is stopped, a dividing point can be found in aquitards next to the pumped layer, with the aquitards being divided into two parts: a compressed part and a rebounding part. The dividing points move toward the side and away from the pumped layer with the transferring of pore pressure in the aquitard. The results of the simulation also show that there is a transition period between land subsidence and rebound. In this transition period, land could continue to subside even though the hydraulic head in the pumped layer begins to recover.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.