Abstract

The present paper introduces a coupled Navier–Stokes/Vortex–Panel solver for the computational study of incompressible high Reynolds number flow around horizontal axis wind turbines. The Navier–Stokes solver is confined to the near-field around one wind turbine blade; the Vortex–Panel method accounts for the far-field of a two-bladed rotor. A robust coupling between both methods is achieved through the spanwise distribution of bound circulation determined by Stokes’ theorem. The coupled solver reduces both artificial dissipation and computational cost compared to a full-domain Navier–Stokes analysis. Results obtained for inviscid and attached viscous flow around an optimal wind turbine blade are compared to a vortex model based on strip theory. Good agreement is found between both models that serves as a validation of the coupled solver for future applications to wind turbines.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.