Abstract

Carbon stocks in boreal forests play an important role in global carbon balance but are sensitive to climate change and disturbances. Ecological models offer valuable insights into the effects of climate change and disturbances on boreal forests carbon stocks. However, the current pixel-based model coupling approaches are challenging to apply over large spatial extents because high computational loads and model parameterizations. Therefore, we developed a new framework for coupling a forest ecosystem and a landscape model to predict aboveground and soil organic carbon stocks at the ecoregion level. Our results indicated that the new model-coupling framework has some advantages on computation efficiency and model validation. The model results showed that carbon stocks and its spatial distribution were significantly influenced by fire, harvest, and their interactions. Simulation results showed that boreal forests carbon stocks are vulnerable to loss because of future potential disturbances, complicating efforts to offset greenhouse gas emissions through forest management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.