Abstract

The following three models were combined to predict simultaneously photosynthesis, stomatal conductance, transpiration and leaf temperature of a rose leaf: the biochemical model of photosynthesis of Farquhar, von Caemmerer and Berry (1980, Planta 149: 78-90), the stomatal conductance model of Ball, Woodrow and Berry (In: Biggens J, ed. Progress in photosynthesis research. The Netherlands: Martinus Nijhoff Publishers), and an energy balance model. The photosynthetic parameters: maximum carboxylation rate, potential rate of electron transport and rate of triose phosphate utilization, and their temperature dependence were determined using gas exchange data of fully expanded, young, sunlit leaves. The stomatal conductance model was calibrated independently. Prediction of net photosynthesis by the coupled model agreed well with the validation data, but the model tended to underestimate rates of stomatal conductance and transpiration. The coupled model developed in this study can be used to assist growers making environmental control decisions in glasshouse production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call