Abstract

Mesh distortion induced numerical instability is a major roadblock in automotive crashworthiness finite element simulations. Remedies such as wrapping elements with null shells and deletion of distorted meshes have been adopted but none of them seems robust enough to survive various scenarios. Meshfree methods have been developed over the past almost twenty years in view of their capabilities in dealing with large material deformation and separation, but have remained in academic research due to their unaffordable high computational cost in solving large-scale industrial applications. This paper presents a coupled meshfree/finite-element method which allows engineers to model the severe deformation area with the meshfree method while keeping the remaining area modeled by the finite element methods. The method is implemented into LS-DYNA version 971 and its later versions so that it is available for automotive crashworthiness simulations. In the paper, one linear patch test and three crash examples are presented to demonstrate the accuracy of the meshfree formulation, its effectiveness in resolving mesh distortion difficulty, and the efficiency of the coupled meshfree/finite element solver in handling large-scale models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call