Abstract

An innovative coupling numerical algorithm is proposed in the current paper, the front-tracking method–lattice Boltzmann method–machine learning (FTM-LBM-ML) method, to precisely capture fluid flow phase interfaces at the mesoscale and accurately simulate dynamic processes. This method combines the distinctive abilities of the FTM to accurately capture phase interfaces and the advantages of the LBM for easy handling of mesoscopic multi-component flow fields. Taking a single vacuole rising as an example, the input and output sets of the machine learning model are constructed using the FTM’s flow field, such as the velocity and position data from phase interface markers. Such datasets are used to train the Bayesian-Regularized Back Propagation Neural Network (BRBPNN) machine learning model to establish the corresponding relationship between the phase interface velocity and the position. Finally, the trained BRBPNN neural network is utilized within the multi-relaxation LBM pseudo potential model flow field to predict the phase interface position, which is compared with the FTM simulation. It was observed that the BRBPNN-predicted interface within the LBM exhibits a high degree of consistency with the FTM-predicted interface position, showing that the BRBPNN model is feasible and satisfies the accuracy requirements of the FT-LB coupling model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.