Abstract

A coupled Lattice Boltzmann-Volume Penalization (LBM-VP) with local mesh refinement is presented to simulate flows past obstacles in this article. Based on the finite-difference LBM, the local mesh refinement is incorporated into the LBM to improve computing efficiency. The volume penalization method is introduced into the LBM by an external forcing term. In the LBM-VP method, the processes of interpolating velocities on the boundaries points and distributing the force density to the Eulerian points near the boundaries are unnecessary. Performing the LBM-VP on a certain point, only the variables of this point are needed, which means the whole procedure can be conducted parallelly. As a consequence, the whole computing efficiency can be improved. To verify the presented method, flows past a single circular cylinder, a pair of cylinders in tandem arrangement, and a NACA-0012 are investigated. A good agreement between the present results and the data in the previous literatures is achieved, which demonstrates the accuracy and effectiveness of the present method to solve the flows past obstacle problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.