Abstract

Simulation of additive manufacturing processes can provide essential insight into material behavior, residual stress, and ultimately, the performance of additively manufactured parts. In this work, we describe a new simulation based workflow utilizing both solid mechanics and fluid mechanics based formulations within the finite element software package SIERRA (Sierra Solid Mechanics Team in Sierra/SolidMechanics 4.52 User’s Guide SAND2019-2715. Technical report, Sandia National Laboratories, 2011) to enable integrated simulations of directed energy deposition (DED) additive manufacturing processes. In this methodology, a high-fidelity fluid mechanics based model of additive manufacturing is employed as the first step in a simulation workflow. This fluid model uses a level set field to track the location of the boundary between the solid material and background gas and precisely predicts temperatures and material deposition shapes from additive manufacturing process parameters. The resulting deposition shape and temperature field from the fluid model are then mapped into a solid mechanics formulation to provide a more accurate surface topology for radiation and convection boundary conditions and a prescribed temperature field. Solid mechanics simulations are then conducted to predict the evolution of material stresses and microstructure within a part. By combining thermal history and deposition shape from fluid mechanics with residual stress and material property evolutions from solid mechanics, additional fidelity and precision are incorporated into additive manufacturing process simulations providing new insight into complex DED builds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call