Abstract

In this paper, a coupled model of the thermo-elastic-plastic material under large deformation for orthogonal cutting is constructed. A chip separation criterion based on the critical value of the strain energy density is introduced into the analytical model. A scheme of twin node processing and a concept of loading/unloading are also presented for chip formation. The flow stress is taken as a function of strain, strain rate and temperature in order to reflect realistic behavior in metal cutting. The cutting tool is incrementally advanced forward from an incipient stage of tool-workpiece engagement to a steady state of chip formation. The finite difference method is adopted to determine the temperature distribution within the chip and tool, and a finite element method, which is based on the thermo-elastic-plastic large deformation model, is used to simulate the entire metal cutting process. Finally, the chip geometry, residual stresses in the machined surface, temperature distributions within the chip and tool, and tool forces are obtained by simulation. The calculated cutting forces agree quite well with the experimental results. It has also been verified that the chip separation criterion value based on the strain energy density is a material constant and is independent of uncut chip thickness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.