Abstract

SUMMARYA hierarchical multiscale framework is proposed to model the mechanical behaviour of granular media. The framework employs a rigorous hierarchical coupling between the FEM and the discrete element method (DEM). To solve a BVP, the FEM is used to discretise the macroscopic geometric domain into an FEM mesh. A DEM assembly with memory of its loading history is embedded at each Gauss integration point of the mesh to serve as the representative volume element (RVE). The DEM assembly receives the global deformation at its Gauss point from the FEM as input boundary conditions and is solved to derive the required constitutive relation at the specific material point to advance the FEM computation. The DEM computation employs simple physically based contact laws in conjunction with Coulomb's friction for interparticle contacts to capture the loading‐history dependence and highly nonlinear dissipative response of a granular material. The hierarchical scheme helps to avoid the phenomenological assumptions on constitutive relation in conventional continuum modelling and retains the computational efficiency of FEM in solving large‐scale BVPs. The hierarchical structure also makes it ideal for distributed parallel computing to fully unleash its predictive power. Importantly, the framework offers rich information on the particle level with direct link to the macroscopic material response, which helps to shed lights on cross‐scale understanding of granular media. The developed framework is first benchmarked by a simulation of single‐element drained test and is then applied to the predictions of strain localisation for sand subject to monotonic biaxial compression, as well as the liquefaction and cyclic mobility of sand in cyclic simple shear tests. It is demonstrated that the proposed method may reproduce interesting experimental observations that are otherwise difficult to be captured by conventional FEM or pure DEM simulations, such as the inception of shear band under smooth symmetric boundary conditions, non‐coaxial granular response, large dilation and rotation at the edges of shear band and critical state reached within the shear band. Copyright © 2014 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.