Abstract
The physicochemical properties of the monovalent actinyl cations, PuO2+ and NpO2+, in water have been studied by means of classical molecular dynamic simulations. A specific set of cation-water intermolecular potentials based on ab initio potential energy surfaces has been built on the basis of the hydrated ion concept. The TIP4P water model was adopted. Given the paramagnetic character of these actinyls, the cation–water interaction energies were computed from highly correlated wave functions using the NEVPT2 method. It is shown that the multideterminantal character of the wave function has a relevant effect on the main distances of the hydrated molecular cations. Several structural, dynamical, and energetic properties of the aqueous solutions have been obtained and analyzed. Structural RDF analysis gives An–Oyl distances of 1.82 and 1.84 Å and An–O(water) distances of 2.51 and 2.53 Å for PuO2+ and NpO2+ in water, respectively. Experimental EXAFS spectra from dilute aqueous solutions of PuO2+ and NpO2+ are revisited and analyzed, assuming tetra- and pentahydration of the actinyl cations. Simulated EXAFS spectra have been computed from the snapshots of the MD simulations. Good agreement with the experimental information available is found. The global analysis leads us to conclude that both PuO2+ and NpO2+ cations in water are stable pentahydrated aqua ions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.