Abstract

As a first endeavour, nonlinear dynamic response of the glass fibre-reinforced​ epoxy (GRE) laminated composite cylindrical shells under an impulse load is investigated based on the first-order shear deformation theory (FSDT) of shells. Green’s strain and von Kármán hypothesis are assumed to consider the geometrical nonlinearity due to large deformation in the model. A new solution procedure composed of the differential quadrature method (DQM) based on the direct projection of the Heaviside function and a non-uniform rational B-spline (NURBS) based multi-step time integration scheme is employed to discretize the governing equations in the spatial and temporal domains, respectively. The approach is validated by showing its fast convergence rate and performing comparison studies with available solutions in the limited available cases. A comprehensive parametric study is performed then on the model and the effects of the geometrical parameters, number of layers, load location, time durations, and types of impulse loading on the nonlinear dynamic responses of GRE laminated composite cylindrical shells are investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.