Abstract

Massive debris flows or rock avalanches falling into a water reservoir may cause devastating hazards such as overtopping or dam breakage. This paper presents a coupled Computational Fluid Dynamics and Discrete Element Method (CFD-DEM) analysis on the impacting behaviour of a granular flow falling from an inclined slope into a water reservoir. The coupling between CFD and DEM considers such important fluid–particle interaction forces as the buoyancy force, the drag force and the virtual mass force. It is found that the presence of water in the reservoir can generally help to reduce direct impact of granular flow on the check dam behind the reservoir, minimizes the intense collisions and bouncing among particles and helps form a more homogeneous final deposited heap as compared to the dry case. While the interparticle/particle–wall frictions and collisions dominate the energy dissipation in the dry granular flow, the majority of kinetic energy of the granular system in the wet case is first transferred to the water body, which leaves the granular flow itself to become a contact-shearing dominant one and causes impulse wave travelling between the check dam and the slope surface for a rather sustained period before settling down. A power law distribution is found for the velocity profile of the granular flow travelling on both the slope and the reservoir ground surfaces, and it may change temporarily to a linear distribution at the transition point of the slope toe where the Savage number depicts a peak. The consideration of rolling friction among particles may homogeneously reduce the travelling velocity of the granular flow and alleviate the overall impact on the check dam. The impact on the check dam depends on both the initial debris releasing height and the reservoir water level. Medium water levels in the reservoir have been found to be generally safer when the initial debris height is relatively high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.