Abstract

While the integration of the fuel cell (FC) and the semiconductor thermoelectric device (TED) to form a clean energy hybrid FC-TED system has been previously studied using 0-D mathematical equations, a 3-D finite element model that couples together the physics between the two devices is yet to be comprehensively studied. This paper introduces a 3-D finite element model developed in COMSOL Multiphysics that simulates both the FC and the TED subsystems where the FC electrochemical dynamics and the TED's thermoelectric effect and heat transfer physics take place between them. The studied FC stack is in direct contact with one side of the TED via the top of the gas channel structure and the other side is then convectively cooled by active air cooling. Results demonstrate that the proposed model can easily simulate the TED as both a thermoelectric generator (TEG) or as a Peltier device for cooling and heating. In the TEG mode, energy harvesting efficiency is observed at only 0.1% but expected to improve with better TED to FC relative sizing. The Peltier heating mode is also found to be advantageous in terms of quickly regulating the FC stack temperature, a valuable feature for startup processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call