Abstract

It has been recently shown that the fully enriched μ -calculus, an expressive modal logic, is undecidable. In the current work, we prove that this result does not longer hold when considering finite tree models. This is achieved with the introduction of an extension of the fully enriched μ -calculus for trees with numerical constraints. Contrastively with graded modalities, which restrict the occurrence of immediate successor nodes only, the logic introduced in this paper can concisely express numerical constraints on any tree region, as for instance the ancestor or descendant nodes. In order to show that the logic is in EXPTIME, we also provide a corresponding satisfiability algorithm. By succinct reductions to the logic, we identify several decidable extension of regular tree languages with counting and interleaving operators. It is also shown that XPath extensions with counting constructs on regular path queries can be concisely captured by the logic. Finally, we show that several XML reasoning problems (XPath queries with schemas), such as emptiness and containment, can be optimally solved with the satisfiability algorithm.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.