Abstract

We consider a finite horizon deterministic optimal control problem with reflection. The final cost is assumed to be merely a locally bounded function which leads to a discontinuous value function. We address the question of the characterization of the value function as the unique solution of an Hamilton–Jacobi equation with Neumann boundary conditions. We follow the discontinuous approach developed by Barles and Perthame for problems set in the whole space. We prove that the minimal and maximal discontinuous viscosity solutions of the associated Hamilton–Jacobi can be written in terms of value functions of control problems with reflection. Nethertheless, we construct a counter-example showing that the value function is not the unique solution of the equation. To cite this article: O. Ley, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 469–473.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.