Abstract
A novel coumarin-derived Schiff base fluorescence probe (CTB) has been successfully designed and synthesized through exploiting tris-(2-aminothyl)-amine moiety as a recognition unit for the highly selective and sensitive detection of Cd2+. It is based on CN isomerization and the photo-induced electron transfer (PET) mechanism. The investigation into the sensing processes showed that CTB exhibited an excellent selectivity for Cd2+. The sensitivity exceeded that of other competing metal ions, and had a high sensitivity, a detection limit of 1.16 × 10-7 M with the association constants of 1.37 × 1011 M-2. The experiments including Job's plot, UV-Vis titration, 1H NMR titration and ESI-MS spectrum established that the probe CTB binds to Cd2+ in a 1:2 ratio. Further studies also demonstrated that probe CTB can be successfully applied to the fluorescence imaging of Cd2+ in HepG-2 cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.