Abstract

In this paper, a novel coumarin-derived fluorescent probe NY was designed and synthesized. NY displayed a significant ratiometric fluorescence response towards Cu2+ in PBS buffer (10 mM, pH = 7.4), with the emission wavelength blue-shifted from 580 to 495 nm, and a fluorescence change from orange to green was evident under a 365 nm UV light. Meanwhile, NY had the advantages of high selectivity, short response time (5 min), low detection limit (1.3 × 10-8 M) and large binding constant (1.45 × 105 M-1) towards Cu2+. The binding mechanism between NY and Cu2+ was elucidated by FT-IR, 1H NMR titration, TOF-MS and Job's plot analysis. In addition, NY was successfully employed in the detection of Cu2+ within environmental water and vegetable samples with satisfactory results. Laser confocal microscopy imaging results showed that NY could easily penetrate HeLa cells membrane to target mitochondria and image Cu2+ in living cells. Furthermore, NY demonstrated mechanochromic properties by exhibiting orange-red fluorescence when subjected to mechanical grinding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call