Abstract
NAC protein is a large plant specific transcription factor family, which plays important roles in the response to abiotic stresses. However, the regulation mechanism of most NAC proteins in drought stress remains to be further uncovered. In this study, we elucidated the molecular functions of a NAC protein, GhirNAC2, in response to drought stress in cotton. GhirNAC2 was greatly induced by drought and phytohormone abscisic acid (ABA). Subcellular localization demonstrated that GhirNAC2 was located in the nucleus. Co-suppression of GhirNAC2 in cotton led to larger stomata aperture, elevated water loss and finally reduced transgenic plants tolerance to drought stress. Furthermore, the endogenous ABA content was significantly lower in GhirNAC2-suppressed transgenic plant leaves compared to wild type. in vivo and in vitro studies showed that GhirNAC2 directly binds to the promoter of GhNCED3a/3c, key genes in ABA biosynthesis, which were both down-regulated in GhirNAC2-suppressed transgenic lines. Transient silencing of GhNCED3a/3c also significantly reduced the resistance to drought stress in cotton plants. However, ectopic expression of GhirNAC2 in tobacco significantly enhanced seed germination, root growth and plant survival under drought stress. Taken together, GhirNAC2 plays a positive role in cotton drought tolerance, which functions by modulating ABA biosynthesis and stomata closure via regulating GhNCED3a/3c expression.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Plant Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.