Abstract

In the era of big data, large scale group decision-making (LSGDM) with social networks (SNs) (namely, SN-LSGDM) has become a hot topic in the field of decision science. Faced with the explosive growth of information, decision-makers (DMs) face immense challenges in processing and integrating vast amounts of data, often finding it difficult to fully comprehend all the information, leading to potentially incomplete expressions of their fuzzy preference relations (FPRs). This limitation in information processing not only affects the quality of decision-making but also increases the difficulty and cost of reaching a consensus. To overcome these challenges and enhance the efficiency and accuracy of decision-making, this paper designs a consensus model that minimizes adjustment costs in light of a dynamic trust network. Firstly, we introduce a measurement method based on K-nearest neighbor (KNN) information, which comprehensively considers the trust level of DMs and the similarity of preference relations, effectively filling in missing preference information and improving the completeness and accuracy of decision-making. In addition, an improved k-means clustering algorithm is adopted, which takes into account the mutual influences between DMs and the cost of unit adjustment. On this basis, a two-stage minimum adjustment cost consensus reaching mechanism based on three-way decision (TWD) is proposed, using comprehensive adjustment priority as the criterion for division, to achieve feedback adjustment at the individual and subgroup levels, ensuring the coordination and consistency of the decision-making plan. At the same time, an optimization model is introduced to achieve cost minimization. Through detailed case studies and comparative analysis, the feasibility and superiority of this method in practical applications have been demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.