Abstract

A simplified, cost-effective flexible micro-electronic-mechanical systems (MEMS) technology has been developed for realizing a temperature-sensing array on a flexible polyimide substrate. The fabrication technique utilized liquid polyimide to form flexible film on the rigid silicon wafer using a temporary carrier during the fabrication. The platinum thin film is employed as temperature sensitive material and 8×8 temperature-sensing arrays were micromachined on the polyimide, from which the silicon wafer carrier was removed at the end of fabrication. The platinum thin film temperature sensor exhibits excellent linearity and its temperature coefficient of resistance reaches 0.00291°C−1. Because of the effective thermal isolation, the flexible temperature sensors show a high sensitivity of 1.12Ω/°C at 10mA to the constant drive current. The flexible MEMS technology based on liquid polyimide enables the development of flexible, compliant, robust, and multi-modal sensor skins for many other important applications, such as robotics, biomedicine, and wearable microsystems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.