Abstract

Any signals, if their intensities have a simple functional relationship with analyte concentration, can be applied for analytical purposes. Among them, pressure measurement as a signalling technique has been extensively utilized to develop portable and quantitative bioanalysis, with the advantages of highly sensitive detection of a variety of biomedical targets. In this contribution, it was found that polymyxin B sulphate (PMB) could significantly inhibit the catalytic ability of platinum nanoparticles (PtNPs) prepared in different protocols in the H2O2 breakdown reaction. By employing sodium citrate as the reducing agent to prepare the platinum nanoparticles (C-PtNPs) as an example and monitoring the pressure signal changes of the C-PtNP catalyzed H2O2 breakdown against the reaction time, a sensitive, cost-effective, rapid and reliable analysis method for PMB is established on the basis of the pressure signal readout. The proposed method has a detection limit of 28.6 nM and can selectively detect PMB in both POLY-MxB powder injection and human urine samples, demonstrating its potential in bioanalysis, which would be significant to address biological, clinical and medicinal requirements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.