Abstract

Existing works show that the rotation forest algorithm has competitive performance in terms of classification accuracy for gene expression data. However, most existing works only focus on the classification accuracy and neglect the classification costs. In this study, we propose a cost-sensitive rotation forest algorithm for gene expression data classification. Three classification costs, namely misclassification cost, test cost and rejection cost, are embedded into the rotation forest algorithm. This extension of the rotation forest algorithm is named as cost-sensitive rotation forest algorithm. Experimental results show that the cost-sensitive rotation forest algorithms effectively reduce the classification cost and make the classification result more reliable.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.