Abstract

In the present study a new microcosm system was evaluated for its suitability to investigate nitrogen dynamics between soils, plants and microbes. Five different agricultural soils were ho- mogenized and transferred in the test tubes, and kept under controlled conditions in a climate chamber for 4weeks. Soils differed clearly in nitrogen pools and microbial population structures but less in their activities. Bacterial and fungal community composi- tions and soil properties, except gross N transformation rates, remained stable and reproducible during the test period in all soils. 15 N tracer studies showed that N uptake patterns of barley as well as plant growth were linear in the initial growth period. Overall, the presented microcosm system proved to be a powerful tool to elucidate N pathways in soil-plant-microbe systems. In future studies the microcosm system may greatly help generating new insights in the complex

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.