Abstract
Here, we present the proof-of-concept for a subsurface bioelectrochemical system (BES)-based biosensor capable of monitoring microbial respiration that occurs through exocellular electron transfer. This system includes our open-source design of a three-channel microcontroller-unit (MCU)-based potentiostat that is capable of chronoamperometry, which laboratory tests showed to be accurate within 0.95 ± 0.58% (95% Confidence Limit) of a commercial potentiostat. The potentiostat design is freely available online: http://angenent.bee.cornell.edu/potentiostat.html. This robust and field-ready potentiostat, which can withstand temperatures of −30 °C, can be manufactured at relatively low cost ($600), thus, allowing for en-masse deployment at field sites. The MCU-based potentiostat was integrated with electrodes and a solar panel-based power system, and deployed as a biosensor to monitor microbial respiration in drained thaw lake basins outside Barrow, AK. At three different depths, the working electrode of a microbial three-electrode system (M3C) was maintained at potentials corresponding to the microbial reduction of iron(III) compounds and humic acids. Thereby, the working electrode mimics these compounds and is used by certain microbes as an electron acceptor. The sensors revealed daily cycles in microbial respiration. In the medium- and deep-depth electrodes the onset of these cycles followed a considerable increase in overall activity that corresponded to those soils reaching temperatures conducive to microbial activity as the summer thaw progressed. The BES biosensor is a valuable tool for studying microbial activity in situ in remote environments, and the cost-efficient design of the potentiostat allows for wide-scale use in remote areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.