Abstract
Abstract This paper introduces an adaptive local search coordination for a multimeme Differential Evolution to constrained numerical optimization problems. The proposed approach associates a pool of direct local search operators within the standard Differential Evolution. The coordination mechanism consists of a probabilistic method based on a cost-benefit scheme, and it is aimed to regulate the activation probability of every local search operator during the evolutionary cycle of the global search. Also, the method adopts the ɛ -constrained method as a constraint-handling technique. The proposed approach is tested on thirty-six well-known benchmark problems. Numerical results show that the proposed method is suitable to coordinate a set of local search operators adequately within a memetic scheme for constrained search spaces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.