Abstract

A constant-rate creation of dark particles in the late-time FLRW spacetime provides a cosmological model in accordance with precise observational tests. The matter creation backreaction implies in this context a vacuum energy density scaling linearly with the Hubble parameter, which is consistent with the vacuum expectation value of the QCD condensate in a low-energy expanding spacetime. Both the cosmological constant and coincidence problems are alleviated in this scenario. We discuss the cosmological model that arises in this context and present a joint analysis of observations of the first acoustic peak in the cosmic microwave background (CMB) anisotropy spectrum, the Hubble diagram for supernovas of type Ia (SNIa), the distance scale of baryonic acoustic oscillations (BAO) and the distribution of large scale structures (LSS). We show that a good concordance is obtained, albeit with a higher value of the present matter abundance than in the standard model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call