Abstract
We investigate a model that modifies general relativity on cosmological scales, specifically by having a `glitch' in the gravitational constant between the cosmological (super-horizon) and Newtonian (sub-horizon) regimes, as motivated e.g. in the Hořava-Lifshitz proposal or in the Einstein-aether framework. This gives a single-parameter extension to the standard ΛCDM model, which is equivalent to adding a dark energy component, but where the energy density of this component can have either sign. Fitting to data from the Planck satellite, we find that negative contributions are, in fact, preferred. Additionally, we find that roughly one percent weaker superhorizon gravity can somewhat ease the Hubble and clustering tensions in a range of cosmological observations, although at the expense of spoiling fits to the baryonic acoustic oscillation scale in galaxy surveys. Therefore, the extra parametric freedom offered by our model deserves further exploration, and we discuss how future observations may elucidate this potential cosmic glitch in gravity, through a four-fold reduction in statistical uncertainties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.