Abstract

Particle tracking in physical systems is a well known simulation challenge in many domains. In particular, High Energy Physics (HEP) demand efficient simulations of charged particles moving throughout complex detector geometries in a magnetic field. Quantized State Systems (QSS) is a modern family of hybrid numerical methods that provides attractive performance features for these problems. Its state-of-the-art implementation is the general-purpose QSS Solver toolkit. Meanwhile, Geant4 is the most widely used platform for computational particle physics, embedding vast amounts of physics domain knowledge. Yet, Geant4 relies rigidly on classic discrete time numerical methods. In this work we present a robust co-simulation technique to apply QSS in the simulation of HEP experiments, thus leveraging the best of both toolkits. We obtained speedups of up to three times in synthetic, yet representative scenarios, and a competitive performance in a difficult benchmark modeled after the Compact Muon Solenoid (CMS) particle detector at CERN.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.